Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Microb Biotechnol ; 17(4): e14404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588312

RESUMO

Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.


Assuntos
Fosfatase Ácida , Extremófilos , Fosfatase Ácida/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Hidrólise , Sequência de Aminoácidos , Especificidade por Substrato , Concentração de Íons de Hidrogênio
2.
Enzyme Microb Technol ; 175: 110407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341913

RESUMO

Due to the extreme living conditions, extremophiles have unique characteristics in morphology, structure, physiology, biochemistry, molecular evolution mechanism and so on. Extremophiles have superior growth and synthesis capabilities under harsh conditions compared to conventional microorganisms, allowing for unsterilized fermentation processes and thus better performance in low-cost production. In recent years, due to the development and optimization of molecular biology, synthetic biology and fermentation technology, the identification and screening technology of extremophiles has been greatly improved. In this review, we summarize techniques for the identification and screening of extremophiles and review their applications in industrial biotechnology in recent years. In addition, the facts and perspectives gathered in this review suggest that next-generation industrial biotechnology (NGIBs) based on engineered extremophiles holds the promise of simplifying biofuturing processes, establishing open, non-sterilized continuous fermentation production systems, and utilizing low-cost substrates to make NGIBs attractive and cost-effective bioprocessing technologies for sustainable manufacturing.


Assuntos
Extremófilos , Extremófilos/genética , Biotecnologia/métodos , Fermentação
3.
Environ Microbiol Rep ; 16(1): e13231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192220

RESUMO

Metabolic modelling approaches have become the powerful tools in modern biology. These mathematical models are widely used to predict metabolic phenotypes of the organisms or communities of interest, and to identify metabolic targets in metabolic engineering. Apart from a broad range of industrial applications, the possibility of using metabolic modelling in the contexts of astrobiology are poorly explored. In this mini-review, we consolidated the concepts and related applications of applying metabolic modelling in studying organisms in space-related environments, specifically the extremophilic microbes. We recapitulated the current state of the art in metabolic modelling approaches and their advantages in the astrobiological context. Our review encompassed the applications of metabolic modelling in the theoretical investigation of the origin of life within prebiotic environments, as well as the compilation of existing uses of genome-scale metabolic models of extremophiles. Furthermore, we emphasize the current challenges associated with applying this technique in extreme environments, and conclude this review by discussing the potential implementation of metabolic models to explore theoretically optimal metabolic networks under various space conditions. Through this mini-review, our aim is to highlight the potential of metabolic modelling in advancing the study of astrobiology.


Assuntos
Extremófilos , Extremófilos/genética , Exobiologia , Ambientes Extremos , Redes e Vias Metabólicas/genética
4.
Sci Rep ; 13(1): 16105, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752120

RESUMO

This study provides comprehensive quantitative evidence suggesting that adaptations to extreme temperatures and pH imprint a discernible environmental component in the genomic signature of microbial extremophiles. Both supervised and unsupervised machine learning algorithms were used to analyze genomic signatures, each computed as the k-mer frequency vector of a 500 kbp DNA fragment arbitrarily selected to represent a genome. Computational experiments classified/clustered genomic signatures extracted from a curated dataset of [Formula: see text] extremophile (temperature, pH) bacteria and archaea genomes, at multiple scales of analysis, [Formula: see text]. The supervised learning resulted in high accuracies for taxonomic classifications at [Formula: see text], and medium to medium-high accuracies for environment category classifications of the same datasets at [Formula: see text]. For [Formula: see text], our findings were largely consistent with amino acid compositional biases and codon usage patterns in coding regions, previously attributed to extreme environment adaptations. The unsupervised learning of unlabelled sequences identified several exemplars of hyperthermophilic organisms with large similarities in their genomic signatures, in spite of belonging to different domains in the Tree of Life.


Assuntos
Extremófilos , Extremófilos/genética , Genômica/métodos , Bactérias/genética , Archaea/genética , Genoma Arqueal/genética
5.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047370

RESUMO

Organic solvent tolerant oxidoreductases are significant for both scientific research and biomanufacturing. However, it is really challenging to obtain oxidoreductases due to the shortages of natural resources and the difficulty to obtained it via protein modification. This review summarizes the recent advances in gene mining and structure-functional study of oxidoreductases from extremophiles for non-aqueous reaction systems. First, new strategies combining genome mining with bioinformatics provide new insights to the discovery and identification of novel extreme oxidoreductases. Second, analysis from the perspectives of amino acid interaction networks explain the organic solvent tolerant mechanism, which regulate the discrete structure-functional properties of extreme oxidoreductases. Third, further study by conservation and co-evolution analysis of extreme oxidoreductases provides new perspectives and strategies for designing robust enzymes for an organic media reaction system. Furthermore, the challenges and opportunities in designing biocatalysis non-aqueous systems are highlighted.


Assuntos
Extremófilos , Oxirredutases , Oxirredutases/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Biologia Computacional , Biocatálise , Solventes/química
6.
Appl Environ Microbiol ; 89(1): e0126622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602357

RESUMO

Acidithiobacillus caldus is a common bioleaching bacterium that is inevitably exposed to extreme copper stress in leachates. The ArsR/SmtB family of metalloregulatory repressors regulates homeostasis and resistance in bacteria by specifically responding to metals. Here, we characterized A. caldus Cu(I)-sensitive repressor (AcsR) and gained molecular insights into this new member of the ArsR/SmtB family. Transcriptional analysis indicated that the promoter (PIII) of acsR was highly active in Escherichia coli but inhibited upon AcsR binding to the PIII-acsR region. Size exclusion chromatography and circular dichroism spectra revealed that CuI-AcsR shared an identical assembly state with apo-AcsR, as a dimer with fewer α helices, more extended strands, and more ß turns. Mutation of the cysteine site in AcsR did not affect its assembly state. Copper(I) titrations revealed that apo-AcsR bound two Cu(I) molecules per monomer in vitro with an average dissociation constant (KD) for bicinchoninic acid competition of 2.55 × 10-9 M. Site-directed mutation of putative Cu(I)-binding ligands in AcsR showed that replacing Cys64 with Ala reduces copper binding ability from two Cu(I) molecules per monomer to one, with an average KD of 6.05 × 10-9 M. Electrophoretic mobility shift assays revealed that apo-AcsR has high affinity for the 12-2-12 imperfect inverted repeats P2245 and P2270 in the acsR gene cluster and that Cu-loaded AcsR had lower affinity for DNA fragments than apo-AcsR. We developed a hypothetical working model of AcsR to better understand Cu resistance mechanisms in A. caldus. IMPORTANCE Copper (Cu) resistance among various microorganisms is attracting interest. The chemolithoautotrophic bacterium A. caldus, which can tolerate extreme copper stress (≥10 g/L Cu ions), is typically used to bioleach chalcopyrite (CuFeS2). Understanding of Cu resistance in A. caldus is limited due to scant investigation and the absence of efficient gene manipulation tools. Here, we characterized a new member of the ArsR/SmtB family of prokaryotic metalloregulatory transcriptional proteins that repress operons linked to stress-inducing concentrations of heavy metal ions. This protein can bind two Cu(I) molecules per monomer and negatively regulate its gene cluster. Members of the ArsR/SmtB family have not been investigated in A. caldus until now. The discovery of this novel protein enriches understanding of Cu homeostasis in A. caldus.


Assuntos
Acidithiobacillus , Proteínas de Bactérias , Extremófilos , Transativadores , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cobre/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Íons/metabolismo , Metais/metabolismo , Ligação Proteica , Transativadores/genética , Transativadores/metabolismo
7.
Semin Cell Dev Biol ; 134: 4-13, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35339358

RESUMO

Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.


Assuntos
Extremófilos , Rodófitas , Humanos , Eucariotos , Extremófilos/genética , Rodófitas/genética , Genoma , Solo , Filogenia
8.
Microbiol Res ; 264: 127156, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35985221

RESUMO

The organisms surviving in extreme environments deploy system support including self-protection, and energy distribution to counter extreme environmental stresses. The biological adaptations provide clues about the metabolic networks and regulatory circuits involved in their success in survival to extreme environments of these organisms. Besides this, genes and proteins of these extremophiles have gained worldwide attention of researchers, due to their immense biotechnological importance including source of novel enzymes and biomolecules for applications in industrial processes. Therefore, obtaining an insight into genomic aspects is of vital importance for basic and applied research. Genome wide studies showed that the microbes living in extreme habitats reorganize their genome using insertion, expansion or reduction of genome size, gene reshuffling through displacements and genes reorganization, G+C skewness in the genome, horizontal transfer of genes, change in polyploidy level, and preference for codon in genes that assists during adaptations to environmental extremes. For example, the comparative genomics studies revealed a significant loss of genes in acidophiles than in alkaliphiles and smaller genome size of thermophiles in comparison to psychrophiles. The genomic adaptations in halotolerance include polyploidy, battery of genes for the biosynthesis of organic osmolytes, mechanism of inorganic osmolytes acquisition and role of inorganic osmolytes and transporter system. Furthermore, it is evident that local niche specific adaptations also play a key role during adaptations to extreme environments. All these adaptations maintain extremophiles as operational units and provide them a competitive advantage over their counterparts. The review article describes the genomic multifaceted adaptation at genomic and physiological levels of extremophiles that assists in reshaping the prokaryotic extremophiles during adaptations to extreme environments to obtain a competitive edge.


Assuntos
Extremófilos , Adaptação Fisiológica/genética , Ambientes Extremos , Extremófilos/genética , Genômica , Humanos , Poliploidia
9.
Molecules ; 27(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35807515

RESUMO

Endonuclease III (EndoIII) is a bifunctional DNA glycosylase with specificity for a broad range of oxidized DNA lesions. The genome of an extremely radiation- and desiccation-resistant bacterium, Deinococcus radiodurans, possesses three genes encoding for EndoIII-like enzymes (DrEndoIII1, DrEndoIII2 and DrEndoIII3), which reveal different types of catalytic activities. DrEndoIII2 acts as the main EndoIII in this organism, while DrEndoIII1 and 3 demonstrate unusual and no EndoIII activity, respectively. In order to understand the role of DrEndoIII1 and DrEndoIII3 in D. radiodurans, we have generated mutants which target non-conserved residues in positions considered essential for classic EndoIII activity. In parallel, we have substituted residues coordinating the iron atoms in the [4Fe-4S] cluster in DrEndoIII2, aiming at elucidating the role of the cluster in these enzymes. Our results demonstrate that the amino acid substitutions in DrEndoIII1 reduce the enzyme activity without altering the overall structure, revealing that the residues found in the wild-type enzyme are essential for its unusual activity. The attempt to generate catalytic activity of DrEndoIII3 by re-designing its catalytic pocket was unsuccessful. A mutation of the iron-coordinating cysteine 199 in DrEndoIII2 appears to compromise the structural integrity and induce the formation of a [3Fe-4S] cluster, but apparently without affecting the activity. Taken together, we provide important structural and mechanistic insights into the three EndoIIIs, which will help us disentangle the open questions related to their presence in D. radiodurans and their particularities.


Assuntos
Extremófilos , Proteínas Ferro-Enxofre , Endonucleases/metabolismo , Extremófilos/genética , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética
10.
Extremophiles ; 26(2): 17, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511349

RESUMO

Here, we analysed the genomic evolution in extremophilic bacteria using long simple sequence repeats (SSRs). Frequencies of occurrence, relative abundance (RA) and relative density (RD) of long SSRs were analysed in the genomes of extremophilic bacteria. Thermus aquaticus had the most RA and RD of long SSRs in its coding sequences (110.6 and 1408.3), followed by Rhodoferax antarcticus (77.0 and 1187.4). A positive correlation was observed between G + C content and the RA-RD of long SSRs. Geobacillus kaustophilus, Geobacillus thermoleovorans, Halothermothrix orenii, R. antarcticus, and T. aquaticus preferred trinucleotide repeats within their genomes, whereas others preferred a higher number of tetranucleotide repeats. Gene enrichment showed the presence of these long SSRs in metabolic enzyme encoding genes related to stress tolerance. To analyse the functional implications of SSR insertions, three-dimensional protein structure modelling of SSR containing diguanylate cyclase (DGC) gene encoding protein was carried out. Removal of SSR sequence led to an inappropriate folding and instability of the modelled protein structure.


Assuntos
Extremófilos , Bactérias/genética , Composição de Bases , Extremófilos/genética , Mutação com Ganho de Função , Repetições de Microssatélites
11.
Sci Rep ; 11(1): 21459, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728656

RESUMO

Diamante Lake located at 4589 m.a.s.l. in the Andean Puna constitutes an extreme environment. It is exposed to multiple extreme conditions such as an unusually high concentration of arsenic (over 300 mg L-1) and low oxygen pressure. Microorganisms thriving in the lake display specific genotypes that facilitate survival, which include at least a multitude of plasmid-encoded resistance traits. Hence, the genetic information provided by the plasmids essentially contributes to understand adaptation to different stressors. Though plasmids from cultivable organisms have already been analyzed to the sequence level, the impact of the entire plasmid-borne genetic information on such microbial ecosystem is not known. This study aims at assessing the plasmidome from Diamante Lake, which facilitates the identification of potential hosts and prediction of gene functions as well as the ecological impact of mobile genetic elements. The deep-sequencing analysis revealed a large fraction of previously unknown DNA sequences of which the majority encoded putative proteins of unknown function. Remarkably, functions related to the oxidative stress response, DNA repair, as well as arsenic- and antibiotic resistances were annotated. Additionally, all necessary capacities related to plasmid replication, mobilization and maintenance were detected. Sequences characteristic for megaplasmids and other already known plasmid-associated genes were identified as well. The study highlights the potential of the deep-sequencing approach specifically targeting plasmid populations as it allows to evaluate the ecological impact of plasmids from (cultivable and non-cultivable) microorganisms, thereby contributing to the understanding of the distribution of resistance factors within an extremophilic microbial community.


Assuntos
Bactérias/genética , DNA Bacteriano/análise , Extremófilos/genética , Lagos/microbiologia , Microbiota , Plasmídeos/análise , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Extremófilos/crescimento & desenvolvimento , Extremófilos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Plasmídeos/genética , Plasmídeos/isolamento & purificação , Esgotos/microbiologia
12.
Microbiologyopen ; 10(4): e1200, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459543

RESUMO

The basal zone of glaciers is characterized by physicochemical properties that are distinct from firnified ice due to strong interactions with underlying substrate and bedrock. Basal ice (BI) ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil formation remain poorly described. We report on basal ice geochemistry, bacterial diversity (16S rRNA gene phylogeny), and inferred ecological roles at three temperate Icelandic glaciers. We sampled three physically distinct basal ice facies (stratified, dispersed, and debris bands) and found facies dependent on biological similarities and differences; basal ice character is therefore an important sampling consideration in future studies. Based on a high abundance of silicates and Fe-containing minerals and, compared to earlier BI literature, total C was detected that could sustain the basal ice ecosystem. It was hypothesized that C-fixing chemolithotrophic bacteria, especially Fe-oxidisers and hydrogenotrophs, mutualistically support associated heterotrophic communities. Basal ice-derived rRNA gene sequences corresponding to genera known to harbor hydrogenotrophic methanogens suggest that silicate comminution-derived hydrogen can also be utilized for methanogenesis. PICRUSt-predicted metabolism suggests that methane metabolism and C-fixation pathways could be highly relevant in BI, indicating the importance of these metabolic routes. The nutrients and microbial communities release from melting basal ice may play an important role in promoting pioneering communities establishment and soil development in deglaciating forelands.


Assuntos
Bactérias/metabolismo , Extremófilos/metabolismo , Hidrogênio/metabolismo , Camada de Gelo/microbiologia , Ferro/metabolismo , Silicatos/metabolismo , Bactérias/classificação , Bactérias/genética , Ciclo do Carbono/fisiologia , Crescimento Quimioautotrófico/fisiologia , Ecossistema , Extremófilos/classificação , Extremófilos/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Metano/biossíntese , Metano/metabolismo , Oxirredução , RNA Ribossômico 16S/genética
13.
FEMS Microbiol Lett ; 368(16)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34387344

RESUMO

Photovoltaic panels can be colonized by a highly diverse microbial diversity, despite life-threatening conditions. Although they are distributed worldwide, the microorganisms living on their surfaces have never been profiled in tropical regions using 16S rRNA high-throughput sequencing and PICRUst metagenome prediction of functional content. In this work, we investigated photovoltaic panels from two cities in southeast Brazil, Sorocaba and Itatiba, using these bioinformatics approach. Results showed that, despite significant differences in microbial diversity (p < 0.001), the taxonomic profile was very similar for both photovoltaic panels, dominated mainly by Proteobacteria, Bacteroidota and lower amounts of Cyanobacteria phyla. A predominance of Hymenobacter and Methylobacterium-Methylorubrum was observed at the genus level. We identified a microbial common core composed of Hymenobacter, Deinococcus, Sphingomonas, Methylobacterium-Methylorubrum, Craurococcus-Caldovatus, Massilia, Noviherbaspirillum and 1174-901-12 sharing genera. Predicted metabolisms focused on specific genes associated to radiation and desiccation resistance and pigments, were detected in members of the common core and among the most abundant genera. Our results suggested that taxonomic and functional profiles investigated were consistent with the harsh environment that photovoltaic panels represent. Moreover, the presence of stress genes in the predicted functional content was a preliminary evidence that microbes living there are a possibly source of metabolites with biotechnological interest.


Assuntos
Cianobactérias , Extremófilos , Microbiota , Energia Solar , Materiais de Construção/microbiologia , Cianobactérias/genética , Extremófilos/classificação , Extremófilos/genética , Metagenoma , Microbiota/genética , RNA Ribossômico 16S/genética , Clima Tropical
14.
Artigo em Inglês | MEDLINE | ID: mdl-34069056

RESUMO

Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain extremophilic microorganisms, with a main focus on thermophiles, which make them attractive for biotechnological applications in the field of environmental remediation; moreover, it sheds light on updated genetic systems (also those based on the CRISPR-Cas tool), which expand the potentialities of these microorganisms to be genetically manipulated for various biotechnological purposes.


Assuntos
Extremófilos , Metais Pesados , Biodegradação Ambiental , Ecossistema , Extremófilos/genética , Redes e Vias Metabólicas
15.
Biosci Rep ; 41(4)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33871022

RESUMO

Understanding the characteristics that define temperature-adapted enzymes has been a major goal of extremophile enzymology in recent decades. In the present study, we explore these characteristics by comparing psychrophilic, mesophilic, and thermophilic enzymes. Through a meta-analysis of existing data, we show that psychrophilic enzymes exhibit a significantly larger gap (Tg) between their optimum and melting temperatures compared with mesophilic and thermophilic enzymes. These results suggest that Tg may be a useful indicator as to whether an enzyme is psychrophilic or not and that models of psychrophilic enzyme catalysis need to account for this gap. Additionally, by using predictive protein stability software, HoTMuSiC and PoPMuSiC, we show that the deleterious nature of amino acid substitutions to protein stability increases from psychrophiles to thermophiles. How this ultimately affects the mutational tolerance and evolutionary rate of temperature adapted organisms is currently unknown.


Assuntos
Estabilidade Enzimática , Extremófilos/enzimologia , Termotolerância , Substituição de Aminoácidos , Extremófilos/genética , Desnaturação Proteica , Análise de Sequência de Proteína/métodos , Software
16.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572971

RESUMO

Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a "weak link" from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop "hot spots" for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure-stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions.


Assuntos
Quitinases/química , Estabilidade Enzimática/genética , Extremófilos/química , Conformação Proteica , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Quitinases/genética , Quitinases/ultraestrutura , Biologia Computacional , Extremófilos/enzimologia , Extremófilos/genética , Temperatura Alta , Simulação de Dinâmica Molecular , Estabilidade Proteica
17.
ACS Synth Biol ; 10(2): 297-308, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501828

RESUMO

The marine yeast Debaryomyces hansenii is of high importance in the food, chemical, and medical industries. D. hansenii is also a popular model for studying molecular mechanisms of halo- and osmotolerance. The absence of genome editing technologies hampers D. hansenii research and limits its biotechnological application. We developed novel and efficient single- and dual-guide CRISPR systems for markerless genome editing of D. hansenii. The single-guide system allows high-efficiency (up to 95%) mutation of genes or regulatory elements. The dual-guide system is applicable for efficient deletion of genomic loci. We used these tools to study transcriptional regulation of the 26S proteasome, an ATP-dependent protease complex whose proper function is vital for all cells and organisms. We developed a genetic approach to control the activity of the 26S proteasome by deregulation of its essential subunits. The mutant strains were sensitive to geno- and proteotoxic stresses as well as high salinity and osmolarity, suggesting a contribution of the proteasome to the extremophilic properties of D. hansenii. The developed CRISPR systems allow efficient D. hansenii genome engineering, providing a genetic way to control proteasome activity, and should advance applications of this yeast.


Assuntos
Sistemas CRISPR-Cas , Debaryomyces/enzimologia , Debaryomyces/genética , Edição de Genes/métodos , Complexo de Endopeptidases do Proteassoma/genética , Saccharomyces cerevisiae/genética , Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Extremófilos/enzimologia , Extremófilos/genética , Regulação da Expressão Gênica , Genoma Fúngico , Organismos Geneticamente Modificados , Osmorregulação/genética , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
18.
Biochimie ; 182: 23-36, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421499

RESUMO

Microbial lipases are most broadly used biocatalysts for environmental and industrial applications. Lipases catalyze the hydrolysis and synthesis of long acyl chain esters and have a characteristic folding pattern of α/ß hydrolase with highly conserved catalytic triad (Serine, Aspartic/Glutamic acid and Histidine). Mesophilic lipases (optimal activity in neutral pH range, mesophilic temperature range, atmospheric pressure, normal salinity, non-radio-resistant, and instability in organic solvents) have been in use for many industrial biotransformation reactions. However, lipases from extremophiles can be used to design biotransformation reactions with higher yields, less byproducts or useful side products and have been predicted to catalyze those reactions also, which otherwise are not possible with the mesophilic lipases. The extremophile lipase perform activity at extremes of temperature, pH, salinity, and pressure which can be screened from metagenome and de novo lipase design using computational approaches. Despite structural similarity, they exhibit great diversity at the sequence level. This diversity is broader when lipases from the bacterial, archaeal, plant, and animal domains/kingdoms are compared. Furthermore, a great diversity of novel lipases exists and can be discovered from the analysis of the dark matter - the unexplored nucleotide/metagenomic databases. This review is an update on extremophilic microbial lipases, their diversity, structure, and classification. An overview on novel lipases which have been detected through analysis of the genomic dark matter (metagenome) has also been presented.


Assuntos
Extremófilos , Lipase , Metagenômica , Estabilidade Enzimática , Extremófilos/enzimologia , Extremófilos/genética , Concentração de Íons de Hidrogênio , Lipase/química , Lipase/genética , Especificidade por Substrato , Temperatura
19.
Genes (Basel) ; 12(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430222

RESUMO

Acidithiobacillus species are fundamental players in biofilm formation by acidophile bioleaching communities. It has been previously reported that Acidithiobacillus ferrooxidans possesses a functional quorum sensing mediated by acyl-homoserine lactones (AHL), involved in biofilm formation, and AHLs naturally produced by Acidithiobacillus species also induce biofilm formation in Acidithiobacillus thiooxidans. A c-di-GMP pathway has been characterized in Acidithiobacillus species but it has been pointed out that the c-di-GMP effector PelD and pel-like operon are only present in the sulfur oxidizers such as A. thiooxidans. PEL exopolysaccharide has been recently involved in biofilm formation in this Acidithiobacillus species. Here, by comparing wild type and ΔpelD strains through mechanical analysis of biofilm-cells detachment, fluorescence microscopy and qPCR experiments, the structural role of PEL exopolysaccharide and the molecular network involved for its biosynthesis by A. thiooxidans were tackled. Besides, the effect of AHLs on PEL exopolysaccharide production was assessed. Mechanical resistance experiments indicated that the loss of PEL exopolysaccharide produces fragile A. thiooxidans biofilms. qRT-PCR analysis established that AHLs induce the transcription of pelA and pelD genes while epifluorescence microscopy studies revealed that PEL exopolysaccharide was required for the development of AHL-induced biofilms. Altogether these results reveal for the first time that AHLs positively regulate pel genes and participate in the molecular network for PEL exopolysaccharide biosynthesis by A. thiooxidans.


Assuntos
Acidithiobacillus thiooxidans/genética , Acil-Butirolactonas/metabolismo , Extremófilos/genética , Regulação Bacteriana da Expressão Gênica , Polissacarídeo-Liases/genética , Acidithiobacillus thiooxidans/metabolismo , Biofilmes/crescimento & desenvolvimento , Vias Biossintéticas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Extremófilos/metabolismo , Óperon , Polissacarídeo-Liases/metabolismo , Polissacarídeos Bacterianos/biossíntese , Percepção de Quorum
20.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266251

RESUMO

The reactive oxygen species (ROS) gene network, consisting of both ROS-generating and detoxifying enzymes, adjusts ROS levels in response to various stimuli. We performed a cross-kingdom comparison of ROS gene networks to investigate how they have evolved across all Eukaryotes, including protists, fungi, plants and animals. We included the genomes of 16 extremotolerant Eukaryotes to gain insight into ROS gene evolution in organisms that experience extreme stress conditions. Our analysis focused on ROS genes found in all Eukaryotes (such as catalases, superoxide dismutases, glutathione reductases, peroxidases and glutathione peroxidase/peroxiredoxins) as well as those specific to certain groups, such as ascorbate peroxidases, dehydroascorbate/monodehydroascorbate reductases in plants and other photosynthetic organisms. ROS-producing NADPH oxidases (NOX) were found in most multicellular organisms, although several NOX-like genes were identified in unicellular or filamentous species. However, despite the extreme conditions experienced by extremophile species, we found no evidence for expansion of ROS-related gene families in these species compared to other Eukaryotes. Tardigrades and rotifers do show ROS gene expansions that could be related to their extreme lifestyles, although a high rate of lineage-specific horizontal gene transfer events, coupled with recent tetraploidy in rotifers, could explain this observation. This suggests that the basal Eukaryotic ROS scavenging systems are sufficient to maintain ROS homeostasis even under the most extreme conditions.


Assuntos
Eucariotos/genética , Eucariotos/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Redes Reguladoras de Genes , Espécies Reativas de Oxigênio/metabolismo , Biomarcadores , Regulação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Estresse Oxidativo , Plantas/genética , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...